Model Context Protocol (MCP) 是一个开放协议,用于标准化应用程序如何向 LLM 提供工具和上下文。 LangChain Agent 可以使用 MCP 服务器上定义的工具,通过 langchain-mcp-adapters 库来实现。

快速开始

安装 langchain-mcp-adapters 库:

Bash 🟢 基础
pip install langchain-mcp-adapters
Bash 🟢 基础
uv add langchain-mcp-adapters

langchain-mcp-adapters 使 Agent 能够使用跨一个或多个 MCP 服务器定义的工具。

⚠️ 注意

MultiServerMCPClient 默认是无状态的。 每次工具调用都会创建一个新的 MCP ClientSession, 执行工具,然后清理。有关更多详细信息,请参阅有状态会话部分。

访问多个 MCP 服务器

Python 🔴 高级
from langchain_mcp_adapters.client import MultiServerMCPClient  # [!code highlight]
from langchain.agents import create_agent


client = MultiServerMCPClient(  # [!code highlight]
    {
        "math": {
            "transport": "stdio",  # Local subprocess communication
            "command": "python",
            # Absolute path to your math_server.py file
            "args": ["/path/to/math_server.py"],
        },
        "weather": {
            "transport": "http",  # HTTP-based remote server
            # Ensure you start your weather server on port 8000
            "url": "http://localhost:8000/mcp",
        }
    }
)

tools = await client.get_tools()  # [!code highlight]
agent = create_agent(
    "claude-sonnet-4-5-20250929",
    tools  # [!code highlight]
)
math_response = await agent.ainvoke(
    {"messages": [{"role": "user", "content": "what's (3 + 5) x 12?"}]}
)
weather_response = await agent.ainvoke(
    {"messages": [{"role": "user", "content": "what is the weather in nyc?"}]}
)

自定义服务器

要创建自定义 MCP 服务器,请使用 FastMCP 库:

Bash 🟢 基础
pip install fastmcp
Bash 🟢 基础
uv add fastmcp

要使用 MCP 工具服务器测试您的 Agent,请使用以下示例:

Python 🟢 基础
from fastmcp import FastMCP

mcp = FastMCP("Math")

@mcp.tool()
def add(a: int, b: int) -> int:
    """Add two numbers"""
    return a + b

@mcp.tool()
def multiply(a: int, b: int) -> int:
    """Multiply two numbers"""
    return a * b

if __name__ == "__main__":
    mcp.run(transport="stdio")
Python 🟢 基础
from fastmcp import FastMCP

mcp = FastMCP("Weather")

@mcp.tool()
async def get_weather(location: str) -> str:
    """Get weather for location."""
    return "It's always sunny in New York"

if __name__ == "__main__":
    mcp.run(transport="streamable-http")

传输协议(Transports)

MCP 支持不同的传输机制用于客户端-服务器通信。

HTTP

http 传输(也称为 streamable-http)使用 HTTP 请求进行客户端-服务器通信。 有关更多详细信息,请参阅 MCP HTTP 传输规范

Python 🟢 基础
client = MultiServerMCPClient(
    {
        "weather": {
            "transport": "http",
            "url": "http://localhost:8000/mcp",
        }
    }
)

传递 Headers

当通过 HTTP 连接到 MCP 服务器时,您可以使用连接配置中的 headers 字段 包含自定义标头(例如,用于身份验证或跟踪)。这支持 sse(MCP 规范已弃用) 和 streamable_http 传输。

Python 🟡 中级
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent

client = MultiServerMCPClient(
    {
        "weather": {
            "transport": "http",
            "url": "http://localhost:8000/mcp",
            "headers": {  # [!code highlight]
                "Authorization": "Bearer YOUR_TOKEN",  # [!code highlight]
                "X-Custom-Header": "custom-value"  # [!code highlight]
            },  # [!code highlight]
        }
    }
)
tools = await client.get_tools()
agent = create_agent("openai:gpt-4.1", tools)
response = await agent.ainvoke({"messages": "what is the weather in nyc?"})

身份验证

langchain-mcp-adapters 库在底层使用官方的 MCP SDK, 它允许您通过实现 httpx.Auth 接口来提供自定义身份验证机制。

Python 🟢 基础
from langchain_mcp_adapters.client import MultiServerMCPClient

client = MultiServerMCPClient(
    {
        "weather": {
            "transport": "http",
            "url": "http://localhost:8000/mcp",
            "auth": auth, # [!code highlight]
        }
    }
)

stdio

客户端将服务器作为子进程启动,并通过标准输入/输出进行通信。 最适合本地工具和简单设置。

⚠️ 注意

与 HTTP 传输不同,stdio 连接本质上是有状态的—— 子进程在客户端连接的生命周期内持续存在。但是,当使用 MultiServerMCPClient 而不进行显式会话管理时,每次工具调用仍会创建一个新会话。 请参阅有状态会话以管理持久连接。

Python 🟢 基础
client = MultiServerMCPClient(
    {
        "math": {
            "transport": "stdio",
            "command": "python",
            "args": ["/path/to/math_server.py"],
        }
    }
)

有状态会话

默认情况下,MultiServerMCPClient无状态的—— 每次工具调用都会创建一个新的 MCP 会话,执行工具,然后清理。

如果您需要控制 MCP 会话的生命周期 (例如,当使用在工具调用之间维护上下文的有状态服务器时), 您可以使用 client.session() 创建持久的 ClientSession

Python 🟡 中级
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_mcp_adapters.tools import load_mcp_tools
from langchain.agents import create_agent

client = MultiServerMCPClient({...})

# Create a session explicitly
async with client.session("server_name") as session:  # [!code highlight]
    # Pass the session to load tools, resources, or prompts
    tools = await load_mcp_tools(session)  # [!code highlight]
    agent = create_agent(
        "anthropic:claude-3-7-sonnet-latest",
        tools
    )

核心功能

工具(Tools)

工具 允许 MCP 服务器公开 LLM 可以调用以执行操作的可执行函数—— 例如查询数据库、调用 API 或与外部系统交互。 LangChain 将 MCP 工具转换为 LangChain 工具, 使它们可以直接在任何 LangChain Agent 或工作流中使用。

加载工具

使用 client.get_tools() 从 MCP 服务器检索工具并将它们传递给您的 Agent:

Python 🟢 基础
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent

client = MultiServerMCPClient({...})
tools = await client.get_tools()  # [!code highlight]
agent = create_agent("claude-sonnet-4-5-20250929", tools)

结构化内容

MCP 工具可以在人类可读的文本响应之外返回 结构化内容。 当工具需要返回机器可解析的数据(如 JSON)以及显示给模型的文本时,这非常有用。

当 MCP 工具返回 structuredContent 时,适配器将其包装在 MCPToolArtifact 中并将其作为工具的 artifact 返回。 您可以使用 ToolMessage 上的 artifact 字段访问它。 您还可以使用拦截器自动处理或转换结构化内容。

从 artifact 提取结构化内容

调用 Agent 后,您可以从响应中的工具消息访问结构化内容:

Python 🟡 中级
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from langchain.messages import ToolMessage

client = MultiServerMCPClient({...})
tools = await client.get_tools()
agent = create_agent("claude-sonnet-4-5-20250929", tools)

result = await agent.ainvoke(
    {"messages": [{"role": "user", "content": "Get data from the server"}]}
)

# Extract structured content from tool messages
for message in result["messages"]:
    if isinstance(message, ToolMessage) and message.artifact:
        structured_content = message.artifact["structured_content"]

通过拦截器附加结构化内容

如果您希望结构化内容在对话历史中可见(对模型可见), 您可以使用拦截器自动将结构化内容附加到工具结果:

Python 🟡 中级
import json

from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_mcp_adapters.interceptors import MCPToolCallRequest
from mcp.types import TextContent

async def append_structured_content(request: MCPToolCallRequest, handler):
    """Append structured content from artifact to tool message."""
    result = await handler(request)
    if result.structuredContent:
        result.content += [
            TextContent(type="text", text=json.dumps(result.structuredContent)),
        ]
    return result

client = MultiServerMCPClient({...}, tool_interceptors=[append_structured_content])

多模态工具内容

MCP 工具可以在其响应中返回 多模态内容 (图像、文本等)。当 MCP 服务器返回具有多个部分(例如,文本和图像)的内容时, 适配器将它们转换为 LangChain 的标准内容块。 您可以通过 ToolMessage 上的 content_blocks 属性访问标准化表示:

Python 🟡 中级
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent

client = MultiServerMCPClient({...})
tools = await client.get_tools()
agent = create_agent("claude-sonnet-4-5-20250929", tools)

result = await agent.ainvoke(
    {"messages": [{"role": "user", "content": "Take a screenshot of the current page"}]}
)

# Access multimodal content from tool messages
for message in result["messages"]:
    if message.type == "tool":
        # Raw content in provider-native format
        print(f"Raw content: {message.content}")

        # Standardized content blocks  # [!code highlight]
        for block in message.content_blocks:  # [!code highlight]
            if block["type"] == "text":  # [!code highlight]
                print(f"Text: {block['text']}")  # [!code highlight]
            elif block["type"] == "image":  # [!code highlight]
                print(f"Image URL: {block.get('url')}")  # [!code highlight]
                print(f"Image base64: {block.get('base64', '')[:50]}...")  # [!code highlight]

这允许您以与提供者无关的方式处理多模态工具响应, 无论底层 MCP 服务器如何格式化其内容。

资源(Resources)

资源 允许 MCP 服务器公开数据——例如文件、数据库记录或 API 响应—— 客户端可以读取这些数据。LangChain 将 MCP 资源转换为 Blob 对象, 提供了统一的接口来处理文本和二进制内容。

加载资源

使用 client.get_resources() 从 MCP 服务器加载资源:

Python 🟢 基础
from langchain_mcp_adapters.client import MultiServerMCPClient

client = MultiServerMCPClient({...})

# Load all resources from a server
blobs = await client.get_resources("server_name")  # [!code highlight]

# Or load specific resources by URI
blobs = await client.get_resources("server_name", uris=["file:///path/to/file.txt"])  # [!code highlight]

for blob in blobs:
    print(f"URI: {blob.metadata['uri']}, MIME type: {blob.mimetype}")
    print(blob.as_string())  # For text content

您还可以直接使用会话与 load_mcp_resources 一起使用以获得更多控制:

Python 🟡 中级
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_mcp_adapters.resources import load_mcp_resources

client = MultiServerMCPClient({...})

async with client.session("server_name") as session:
    # Load all resources
    blobs = await load_mcp_resources(session)

    # Or load specific resources by URI
    blobs = await load_mcp_resources(session, uris=["file:///path/to/file.txt"])

提示词(Prompts)

提示词 允许 MCP 服务器公开客户端可以检索和使用的可重用提示词模板。 LangChain 将 MCP 提示词转换为消息, 使它们易于集成到基于聊天的工作流中。

加载提示词

使用 client.get_prompt() 从 MCP 服务器加载提示词:

Python 🟢 基础
from langchain_mcp_adapters.client import MultiServerMCPClient

client = MultiServerMCPClient({...})

# Load a prompt by name
messages = await client.get_prompt("server_name", "summarize")  # [!code highlight]

# Load a prompt with arguments
messages = await client.get_prompt(  # [!code highlight]
    "server_name",  # [!code highlight]
    "code_review",  # [!code highlight]
    arguments={"language": "python", "focus": "security"}  # [!code highlight]
)  # [!code highlight]

# Use the messages in your workflow
for message in messages:
    print(f"{message.type}: {message.content}")

您还可以直接使用会话与 load_mcp_prompt 一起使用以获得更多控制:

Python 🟡 中级
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_mcp_adapters.prompts import load_mcp_prompt

client = MultiServerMCPClient({...})

async with client.session("server_name") as session:
    # Load a prompt by name
    messages = await load_mcp_prompt(session, "summarize")

    # Load a prompt with arguments
    messages = await load_mcp_prompt(
        session,
        "code_review",
        arguments={"language": "python", "focus": "security"}
    )

高级功能

工具拦截器

MCP 服务器作为独立进程运行——它们无法访问 LangGraph 运行时信息, 如 store、context 或 Agent 状态。 拦截器弥合了这一差距,在 MCP 工具执行期间为您提供对此运行时上下文的访问。

拦截器还为工具调用提供类似中间件的控制: 您可以修改请求、实现重试、动态添加标头或完全短路执行。

部分 描述
访问运行时上下文 读取用户 ID、API 密钥、存储数据和 Agent 状态
状态更新和命令 使用 Command 更新 Agent 状态或控制图流程
自定义拦截器 修改请求、组合拦截器和错误处理的模式

访问运行时上下文

当 MCP 工具在 LangChain Agent(通过 create_agent)中使用时, 拦截器接收对 ToolRuntime 上下文的访问。 这提供了对工具调用 ID、状态、配置和存储的访问—— 实现访问用户数据、持久化信息和控制 Agent 行为的强大模式。

访问在调用时传递的用户特定配置,如用户 ID、API 密钥或权限:

Python 🔴 高级
from dataclasses import dataclass
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_mcp_adapters.interceptors import MCPToolCallRequest
from langchain.agents import create_agent

@dataclass
class Context:
    user_id: str
    api_key: str

async def inject_user_context(
    request: MCPToolCallRequest,
    handler,
):
    """Inject user credentials into MCP tool calls."""
    runtime = request.runtime
    user_id = runtime.context.user_id  # [!code highlight]
    api_key = runtime.context.api_key  # [!code highlight]

    # Add user context to tool arguments
    modified_request = request.override(
        args={**request.args, "user_id": user_id}
    )
    return await handler(modified_request)

client = MultiServerMCPClient(
    {...},
    tool_interceptors=[inject_user_context],
)
tools = await client.get_tools()
agent = create_agent("gpt-4o", tools, context_schema=Context)

# Invoke with user context
result = await agent.ainvoke(
    {"messages": [{"role": "user", "content": "Search my orders"}]},
    context={"user_id": "user_123", "api_key": "sk-..."}
)

访问长期记忆以检索用户偏好或跨对话持久化数据:

Python 🔴 高级
from dataclasses import dataclass
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_mcp_adapters.interceptors import MCPToolCallRequest
from langchain.agents import create_agent
from langgraph.store.memory import InMemoryStore

@dataclass
class Context:
    user_id: str

async def personalize_search(
    request: MCPToolCallRequest,
    handler,
):
    """Personalize MCP tool calls using stored preferences."""
    runtime = request.runtime
    user_id = runtime.context.user_id
    store = runtime.store  # [!code highlight]

    # Read user preferences from store
    prefs = store.get(("preferences",), user_id)  # [!code highlight]

    if prefs and request.name == "search":
        # Apply user's preferred language and result limit
        modified_args = {
            **request.args,
            "language": prefs.value.get("language", "en"),
            "limit": prefs.value.get("result_limit", 10),
        }
        request = request.override(args=modified_args)

    return await handler(request)

client = MultiServerMCPClient(
    {...},
    tool_interceptors=[personalize_search],
)
tools = await client.get_tools()
agent = create_agent(
    "gpt-4o",
    tools,
    context_schema=Context,
    store=InMemoryStore()
)

访问对话状态以根据当前会话做出决策:

Python 🔴 高级
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_mcp_adapters.interceptors import MCPToolCallRequest
from langchain.messages import ToolMessage

async def require_authentication(
    request: MCPToolCallRequest,
    handler,
):
    """Block sensitive MCP tools if user is not authenticated."""
    runtime = request.runtime
    state = runtime.state  # [!code highlight]
    is_authenticated = state.get("authenticated", False)  # [!code highlight]

    sensitive_tools = ["delete_file", "update_settings", "export_data"]

    if request.name in sensitive_tools and not is_authenticated:
        # Return error instead of calling tool
        return ToolMessage(
            content="Authentication required. Please log in first.",
            tool_call_id=runtime.tool_call_id,
        )

    return await handler(request)

client = MultiServerMCPClient(
    {...},
    tool_interceptors=[require_authentication],
)

访问工具调用 ID 以返回正确格式的响应或跟踪工具执行:

Python 🟡 中级
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_mcp_adapters.interceptors import MCPToolCallRequest
from langchain.messages import ToolMessage

async def rate_limit_interceptor(
    request: MCPToolCallRequest,
    handler,
):
    """Rate limit expensive MCP tool calls."""
    runtime = request.runtime
    tool_call_id = runtime.tool_call_id  # [!code highlight]

    # Check rate limit (simplified example)
    if is_rate_limited(request.name):
        return ToolMessage(
            content="Rate limit exceeded. Please try again later.",
            tool_call_id=tool_call_id,  # [!code highlight]
        )

    result = await handler(request)

    # Log successful tool call
    log_tool_execution(tool_call_id, request.name, success=True)

    return result

client = MultiServerMCPClient(
    {...},
    tool_interceptors=[rate_limit_interceptor],
)

有关更多上下文工程模式,请参阅上下文工程工具

状态更新和命令

拦截器可以返回 Command 对象来更新 Agent 状态或控制图执行流程。 这对于跟踪任务进度、在 Agent 之间切换或提前结束执行很有用。

Python 🔴 高级
from langchain.agents import AgentState, create_agent
from langchain_mcp_adapters.interceptors import MCPToolCallRequest
from langchain.messages import ToolMessage
from langgraph.types import Command

async def handle_task_completion(
    request: MCPToolCallRequest,
    handler,
):
    """Mark task complete and hand off to summary agent."""
    result = await handler(request)

    if request.name == "submit_order":
        return Command(
            update={
                "messages": [result] if isinstance(result, ToolMessage) else [],
                "task_status": "completed",  # [!code highlight]
            },
            goto="summary_agent",  # [!code highlight]
        )

    return result

使用 Commandgoto="__end__" 提前结束执行:

Python 🟡 中级
async def end_on_success(
    request: MCPToolCallRequest,
    handler,
):
    """End agent run when task is marked complete."""
    result = await handler(request)

    if request.name == "mark_complete":
        return Command(
            update={"messages": [result], "status": "done"},
            goto="__end__",  # [!code highlight]
        )

    return result

自定义拦截器

拦截器是包装工具执行的异步函数,实现请求/响应修改、重试逻辑和其他横切关注点。 它们遵循"洋葱"模式,其中列表中的第一个拦截器是最外层。

基本模式

拦截器是一个异步函数,接收请求和处理程序。 您可以在调用处理程序之前修改请求,之后修改响应,或完全跳过处理程序。

Python 🟢 基础
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_mcp_adapters.interceptors import MCPToolCallRequest

async def logging_interceptor(
    request: MCPToolCallRequest,
    handler,
):
    """Log tool calls before and after execution."""
    print(f"Calling tool: {request.name} with args: {request.args}")
    result = await handler(request)
    print(f"Tool {request.name} returned: {result}")
    return result

client = MultiServerMCPClient(
    {"math": {"transport": "stdio", "command": "python", "args": ["/path/to/server.py"]}},
    tool_interceptors=[logging_interceptor],  # [!code highlight]
)

修改请求

使用 request.override() 创建修改后的请求。 这遵循不可变模式,使原始请求保持不变。

Python 🟡 中级
async def double_args_interceptor(
    request: MCPToolCallRequest,
    handler,
):
    """Double all numeric arguments before execution."""
    modified_args = {k: v * 2 for k, v in request.args.items()}
    modified_request = request.override(args=modified_args)  # [!code highlight]
    return await handler(modified_request)

# Original call: add(a=2, b=3) becomes add(a=4, b=6)

运行时修改标头

拦截器可以根据请求上下文动态修改 HTTP 标头:

Python 🟡 中级
async def auth_header_interceptor(
    request: MCPToolCallRequest,
    handler,
):
    """Add authentication headers based on the tool being called."""
    token = get_token_for_tool(request.name)
    modified_request = request.override(
        headers={"Authorization": f"Bearer {token}"}  # [!code highlight]
    )
    return await handler(modified_request)

组合拦截器

多个拦截器以"洋葱"顺序组合——列表中的第一个拦截器是最外层:

Python 🟡 中级
async def outer_interceptor(request, handler):
    print("outer: before")
    result = await handler(request)
    print("outer: after")
    return result

async def inner_interceptor(request, handler):
    print("inner: before")
    result = await handler(request)
    print("inner: after")
    return result

client = MultiServerMCPClient(
    {...},
    tool_interceptors=[outer_interceptor, inner_interceptor],  # [!code highlight]
)

# Execution order:
# outer: before -> inner: before -> tool execution -> inner: after -> outer: after

错误处理

使用拦截器捕获工具执行错误并实现重试逻辑:

Python 🔴 高级
import asyncio

async def retry_interceptor(
    request: MCPToolCallRequest,
    handler,
    max_retries: int = 3,
    delay: float = 1.0,
):
    """Retry failed tool calls with exponential backoff."""
    last_error = None
    for attempt in range(max_retries):
        try:
            return await handler(request)
        except Exception as e:
            last_error = e
            if attempt < max_retries - 1:
                wait_time = delay * (2 ** attempt)  # Exponential backoff
                print(f"Tool {request.name} failed (attempt {attempt + 1}), retrying in {wait_time}s...")
                await asyncio.sleep(wait_time)
    raise last_error

client = MultiServerMCPClient(
    {...},
    tool_interceptors=[retry_interceptor],  # [!code highlight]
)

您还可以捕获特定错误类型并返回回退值:

Python 🟡 中级
async def fallback_interceptor(
    request: MCPToolCallRequest,
    handler,
):
    """Return a fallback value if tool execution fails."""
    try:
        return await handler(request)
    except TimeoutError:
        return f"Tool {request.name} timed out. Please try again later."
    except ConnectionError:
        return f"Could not connect to {request.name} service. Using cached data."

进度通知

订阅长时间运行的工具执行的进度更新:

Python 🟡 中级
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_mcp_adapters.callbacks import Callbacks, CallbackContext

async def on_progress(
    progress: float,
    total: float | None,
    message: str | None,
    context: CallbackContext,
):
    """Handle progress updates from MCP servers."""
    percent = (progress / total * 100) if total else progress
    tool_info = f" ({context.tool_name})" if context.tool_name else ""
    print(f"[{context.server_name}{tool_info}] Progress: {percent:.1f}% - {message}")

client = MultiServerMCPClient(
    {...},
    callbacks=Callbacks(on_progress=on_progress),  # [!code highlight]
)

CallbackContext 提供:

  • server_name:MCP 服务器的名称
  • tool_name:正在执行的工具名称(在工具调用期间可用)

日志记录

MCP 协议支持来自服务器的日志记录通知。 使用 Callbacks 类订阅这些事件。

Python 🟡 中级
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_mcp_adapters.callbacks import Callbacks, CallbackContext
from mcp.types import LoggingMessageNotificationParams

async def on_logging_message(
    params: LoggingMessageNotificationParams,
    context: CallbackContext,
):
    """Handle log messages from MCP servers."""
    print(f"[{context.server_name}] {params.level}: {params.data}")

client = MultiServerMCPClient(
    {...},
    callbacks=Callbacks(on_logging_message=on_logging_message),  # [!code highlight]
)

启发(Elicitation)

启发 允许 MCP 服务器在工具执行期间向用户请求额外输入。 服务器可以交互式地根据需要询问信息,而不是预先要求所有输入。

服务器设置

定义一个使用 ctx.elicit() 请求用户输入的工具:

Python 🟡 中级
from pydantic import BaseModel
from mcp.server.fastmcp import Context, FastMCP

server = FastMCP("Profile")

class UserDetails(BaseModel):
    email: str
    age: int

@server.tool()
async def create_profile(name: str, ctx: Context) -> str:
    """Create a user profile, requesting details via elicitation."""
    result = await ctx.elicit(  # [!code highlight]
        message=f"Please provide details for {name}'s profile:",  # [!code highlight]
        schema=UserDetails,  # [!code highlight]
    )  # [!code highlight]
    if result.action == "accept" and result.data:
        return f"Created profile for {name}: email={result.data.email}, age={result.data.age}"
    if result.action == "decline":
        return f"User declined. Created minimal profile for {name}."
    return "Profile creation cancelled."

if __name__ == "__main__":
    server.run(transport="http")

客户端设置

通过向 MultiServerMCPClient 提供回调来处理启发请求:

Python 🔴 高级
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_mcp_adapters.callbacks import Callbacks, CallbackContext
from mcp.shared.context import RequestContext
from mcp.types import ElicitRequestParams, ElicitResult

async def on_elicitation(
    mcp_context: RequestContext,
    params: ElicitRequestParams,
    context: CallbackContext,
) -> ElicitResult:
    """Handle elicitation requests from MCP servers."""
    # In a real application, you would prompt the user for input
    # based on params.message and params.requestedSchema
    return ElicitResult(  # [!code highlight]
        action="accept",  # [!code highlight]
        content={"email": "[email protected]", "age": 25},  # [!code highlight]
    )  # [!code highlight]

client = MultiServerMCPClient(
    {
        "profile": {
            "url": "http://localhost:8000/mcp",
            "transport": "http",
        }
    },
    callbacks=Callbacks(on_elicitation=on_elicitation),  # [!code highlight]
)

响应动作

启发回调可以返回三种动作之一:

动作 描述
accept 用户提供了有效输入。在 content 字段中包含数据。
decline 用户选择不提供请求的信息。
cancel 用户完全取消了操作。
Python 🟢 基础
# Accept with data
ElicitResult(action="accept", content={"email": "[email protected]", "age": 25})

# Decline (user doesn't want to provide info)
ElicitResult(action="decline")

# Cancel (abort the operation)
ElicitResult(action="cancel")

其他资源